Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Metab Pers Ther ; 39(1): 5-20, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469723

RESUMO

INTRODUCTION: Cancer biomarkers have revolutionized the field of oncology by providing valuable insights into tumor changes and aiding in screening, diagnosis, prognosis, treatment prediction, and risk assessment. The emergence of "omic" technologies has enabled biomarkers to become reliable and accurate predictors of outcomes during cancer treatment. CONTENT: In this review, we highlight the clinical utility of biomarkers in cancer identification and motivate researchers to establish a personalized/precision approach in oncology. By extending a multidisciplinary technology-based approach, biomarkers offer an alternative to traditional techniques, fulfilling the goal of cancer therapeutics to find a needle in a haystack. SUMMARY AND OUTLOOK: We target different forms of cancer to establish a dynamic role of biomarkers in understanding the spectrum of malignancies and their biochemical and molecular characterization, emphasizing their prospective contribution to cancer screening. Biomarkers offer a promising avenue for the early detection of human cancers and the exploration of novel technologies to predict disease severity, facilitating maximum survival and minimum mortality rates. This review provides a comprehensive overview of the potential of biomarkers in oncology and highlights their prospects in advancing cancer diagnosis and treatment.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Estudos Prospectivos , Biomarcadores , Neoplasias/diagnóstico , Neoplasias/terapia , Biomarcadores Tumorais , Prognóstico
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 703-724, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37615709

RESUMO

The main objective of this review is to highlight the therapeutic potential of allicin, a defense molecule in garlic known for its diverse health benefits, and address the key challenges of its bioavailability and stability. The research further aims to evaluate various formulation strategies and nanotechnology-based delivery systems that can resolve these issues and improve allicin's clinical efficacy, especially in cancer therapy. We conducted a comprehensive review of the available literature and previous studies, focusing on the therapeutic properties of allicin, its bioavailability, stability issues, and novel formulation strategies. We assessed the mechanism of action of allicin in cancer, including its effects on signaling pathways, cell cycle, apoptosis, autophagy, and tumor development. We also evaluated the outcomes of both in vitro and in vivo studies on different types of cancers, such as breast, cervical, colon, lung, and gastric cancer. Despite allicin's significant therapeutic benefits, including cardiovascular, antihypertensive, cholesterol-lowering, antimicrobial, antifungal, anticancer, and immune-modulatory activity, its clinical utility is limited due to poor stability and unpredictable bioavailability. Allicin's bioavailability in the gastrointestinal tract is dependent on the activity of the enzyme alliinase, and its stability can be affected by various conditions like gastric acid and intestinal enzyme proteases. Recent advances in formulation strategies and nanotechnology-based drug delivery systems show promise in addressing these challenges, potentially improving allicin's solubility, stability, and bioavailability. Allicin offers substantial potential for cancer therapy, yet its application is hindered by its instability and poor bioavailability. Novel formulation strategies and nanotechnology-based delivery systems can significantly overcome these limitations, enhancing the therapeutic efficacy of allicin. Future research should focus on refining these formulation strategies and delivery systems, ensuring the safety and efficacy of these new allicin formulations. Clinical trials and long-term studies should be carried out to determine the optimal dosage, assess potential side effects, and evaluate their real-world applicability. The comparative analysis of different drug delivery approaches and the development of targeted delivery systems can also provide further insight into enhancing the therapeutic potential of allicin.


Assuntos
Dissulfetos , Neoplasias , Humanos , Disponibilidade Biológica , Ácidos Sulfínicos/uso terapêutico , Ácidos Sulfínicos/metabolismo , Ácidos Sulfínicos/farmacologia , Resultado do Tratamento , Neoplasias/tratamento farmacológico
3.
Front Chem ; 11: 1259435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841202

RESUMO

The use of biomaterials in delivering CRISPR/Cas9 for gene therapy in infectious diseases holds tremendous potential. This innovative approach combines the advantages of CRISPR/Cas9 with the protective properties of biomaterials, enabling accurate and efficient gene editing while enhancing safety. Biomaterials play a vital role in shielding CRISPR/Cas9 components, such as lipid nanoparticles or viral vectors, from immunological processes and degradation, extending their effectiveness. By utilizing the flexibility of biomaterials, tailored systems can be designed to address specific genetic diseases, paving the way for personalized therapeutics. Furthermore, this delivery method offers promising avenues in combating viral illnesses by precisely modifying pathogen genomes, and reducing their pathogenicity. Biomaterials facilitate site-specific gene modifications, ensuring effective delivery to infected cells while minimizing off-target effects. However, challenges remain, including optimizing delivery efficiency, reducing off-target effects, ensuring long-term safety, and establishing scalable production techniques. Thorough research, pre-clinical investigations, and rigorous safety evaluations are imperative for successful translation from the laboratory to clinical applications. In this review, we discussed how CRISPR/Cas9 delivery using biomaterials revolutionizes gene therapy and infectious disease treatment, offering precise and safe editing capabilities with the potential to significantly improve human health and quality of life.

4.
J Biomol Struct Dyn ; 41(6): 2528-2539, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35129088

RESUMO

Today, we are coping with the pandemic, and the novel virus is covertly evolving day by day. Therefore, a precautionary system to deal with the issue is required as early as possible. The last few years were very challenging for doctors, vaccine makers, hospitals, and medical authorities to deal with the massive crowd to provide results for all patients and newcomers in the past months. Thus, these issues should be handled with a robust system that can accord with many people and deliver the results in a fraction of time without visiting public places and help reduce crowd gathering. So, to deal with these issues, we developed an AI model using transfer learning that can aid doctors and other people to get to know whether they were suffering from covid or not. In this paper, we have used VGG-19 (CNN-based) model with open-sourced COVID-CT (CTSI) dataset. The dataset consists of 349 images of COVID-19 of 216 patients and 463 images of NON-COVID-19. We have achieved an accuracy of 95%, precision of 96%, recall of 94%, and F1-Score of 96% from the experiments.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Redes Neurais de Computação , Humanos , COVID-19/epidemiologia , Aprendizado de Máquina , Tomografia Computadorizada por Raios X
5.
New Gener Comput ; 41(1): 61-84, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36439302

RESUMO

In the past few years, most of the work has been done around the classification of covid-19 using different images like CT-scan, X-ray, and ultrasound. But none of that is capable enough to deal with each of these image types on a single common platform and can identify the possibility that a person is suffering from COVID or not. Thus, we realized there should be a platform to identify COVID-19 in CT-scan and X-ray images on the fly. So, to fulfill this need, we proposed an AI model to identify CT-scan and X-ray images from each other and then use this inference to classify them of COVID positive or negative. The proposed model uses the inception architecture under the hood and trains on the open-source extended covid-19 dataset. The dataset consists of plenty of images for both image types and is of size 4 GB. We achieved an accuracy of 100%, average macro-Precision of 100%, average macro-Recall of 100%, average macro f1-score of 100%, and AUC score of 99.6%. Furthermore, in this work, cloud-based architecture is proposed to massively scale and load balance as the Number of user requests rises. As a result, it will deliver a service with minimal latency to all users.

6.
EXCLI J ; 21: 1245-1272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483910

RESUMO

The severe acute respiratory syndrome (SARS-CoV, now SARS-CoV-1), middle east respiratory syndrome (MERS-CoV), Neo-CoV, and 2019 novel coronavirus (SARS-CoV-2/COVID-19) are the most notable coronaviruses, infecting the number of people worldwide by targeting the respiratory system. All these viruses are of zoonotic origin, predominantly from bats which are one of the natural reservoir hosts for coronaviruses. Thus, the major goal of our review article is to compare and contrast the characteristics and attributes of these coronaviruses. The SARS-CoV-1, MERS-CoV, and COVID-19 have many viral similarities due to their classification, they are not genetically related. COVID-19 shares approximately 79 % of its genome with SARS-CoV-1 and about 50 % with MERS-CoV. The shared receptor protein, ACE2 exhibit the most striking genetic similarities between SARS-CoV-1 and SARS-CoV-2. SARS-CoV primarily replicates in the epithelial cells of the respiratory system, but it may also affect macrophages, monocytes, activated T cells, and dendritic cells. MERS-CoV not only infects and replicates inside the epithelial and immune cells, but it may lyse them too, which is one of the common reasons for MERS's higher mortality rate. The details of infections caused by SARS-CoV-2 and lytic replication mechanisms in host cells are currently mysterious. In this review article, we will discuss the comparative highlights of SARS-CoV-1, MERS-CoV, SARS-CoV-2, and Neo-CoV, concerning their structural features, morphological characteristics, sources of virus origin and their evolutionary transitions, infection mechanism, computational study approaches, pathogenesis and their severity towards several diseases, possible therapeutic approaches, and preventive measures.

7.
Front Pharmacol ; 13: 987088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386196

RESUMO

Ovarian cancer, and particularly its most frequent type, epithelial ovarian carcinoma, constitutes one of the most dangerous malignant tumors among females. Substantial evidence has described the potential of phytochemicals against ovarian cancer. The effect of natural compounds on endoplasmic reticulum (ER) stress is of great relevance in this regard. In ovarian cancer, the accumulation of misfolded proteins in the ER lumen results in decompensated ER stress. This leads to deregulation in the physiological processes for the posttranslational modification of proteins, jeopardizes cellular homeostasis, and increases apoptotic signaling. Several metabolites and metabolite extracts of phytochemical origin have been studied in the context of ER stress in ovarian cancer. Resveratrol, quercetin, curcumin, fucosterol, cleistopholine, fucoidan, and epicatechin gallate, among others, have shown inhibitory potential against ER stress. The chemical structure of each compound plays an important role concerning its pharmacodynamics, pharmacokinetics, and overall effectiveness. Studying and cross-comparing the chemical features that render different phytochemicals effective in eliciting particular anti-ER stress actions can help improve drug design or develop multipotent combination regimens. Many studies have also investigated the properties of formulations such as nanoparticles, niosomes, liposomes, and intravenous hydrogel based on curcumin and quercetin along with some other phytomolecules in ovarian cancer. Overall, the potential of phytochemicals in targeting genetic mechanisms of ovarian cancer warrants further translational and clinical investigation.

8.
Environ Sci Pollut Res Int ; 29(60): 89853-89873, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36367649

RESUMO

Cancer is an illness characterized by abnormal cell development and the capability to infiltrate or spread to rest of the body. A tumor is the term for this abnormal growth that develops in solid tissues like an organ, muscle, or bone and can spread to other parts of the body through the blood and lymphatic systems. Nutrition is a critical and immortal environmental component in the development of all living organisms encoding the relationship between a person's nutrition and their genes. Nutrients have the ability to modify gene expression and persuade alterations in DNA and protein molecules which is researched scientifically in nutrigenomics. These interactions have a significant impact on the pharmacokinetic properties of bioactive dietary components as well as their site of action/molecular targets. Nutrigenomics encompasses nutrigenetics, epigenetics, and transcriptomics as well as other "omic" disciplines like proteomics and metabolomics to explain the vast disparities in cancer risk among people with roughly similar life style. Clinical trials and researches have evidenced that alternation of dietary habits is potentially one of the key approaches for reducing cancer risk in an individual. In this article, we will target how nutrigenomics and functional food work as preventive therapy in reducing the risk of cancer.


Assuntos
Terapias Complementares , Neoplasias , Humanos , Metabolômica , Proteômica , Neoplasias/prevenção & controle
9.
Crit Rev Food Sci Nutr ; : 1-45, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838143

RESUMO

Breast cancer (BC) is the most prevalent neoplasm among women. Genetic and environmental factors lead to BC development and on this basis, several preventive - screening and therapeutic interventions have been developed. Hormones, both in the form of endogenous hormonal signaling or hormonal contraceptives, play an important role in BC pathogenesis and progression. On top of these, breast microbiota includes both species with an immunomodulatory activity enhancing the host's response against cancer cells and species producing proinflammatory cytokines associated with BC development. Identification of novel multitargeted therapeutic agents with poly-pharmacological potential is a dire need to combat advanced and metastatic BC. A growing body of research has emphasized the potential of natural compounds derived from medicinal plants and microbial species as complementary BC treatment regimens, including dietary supplements and probiotics. In particular, extracts from plants such as Artemisia monosperma Delile, Origanum dayi Post, Urtica membranacea Poir. ex Savigny, Krameria lappacea (Dombey) Burdet & B.B. Simpson and metabolites extracted from microbes such as Deinococcus radiodurans and Streptomycetes strains as well as probiotics like Bacillus coagulans and Lactobacillus brevis MK05 have exhibited antitumor effects in the form of antiproliferative and cytotoxic activity, increase in tumors' chemosensitivity, antioxidant activity and modulation of BC - associated molecular pathways. Further, bioactive compounds like 3,3'-diindolylmethane, epigallocatechin gallate, genistein, rutin, resveratrol, lycopene, sulforaphane, silibinin, rosmarinic acid, and shikonin are of special interest for the researchers and clinicians because these natural agents have multimodal action and act via multiple ways in managing the BC and most of these agents are regularly available in our food and fruit diets. Evidence from clinical trials suggests that such products had major potential in enhancing the effectiveness of conventional antitumor agents and decreasing their side effects. We here provide a comprehensive review of the therapeutic effects and mechanistic underpinnings of medicinal plants and microbial metabolites in BC management. The future perspectives on the translation of these findings to the personalized treatment of BC are provided and discussed.

10.
Front Pharmacol ; 13: 769111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479320

RESUMO

Ethnopharmacological relevance: The genus Alternanthera (Amaranthaceae) comprises 139 species including 14 species used traditionally for the treatment of various ailments such as hypertension, pain, inflammation, diabetes, cancer, microbial and mental disorders. Aim of the review: To search research gaps through critical assessment of pharmacological activities not performed to validate traditional claims of various species of Alternanthera. This review will aid natural product researchers in identifying Alternanthera species with therapeutic potential for future investigation. Materials and methods: Scattered raw data on ethnopharmacological, morphological, phytochemical, pharmacological, toxicological, and clinical studies of various species of the genus Alternanthera have been compiled utilizing search engines like SciFinder, Google Scholar, PubMed, Science Direct, and Open J-Gate for 100 years up to April 2021. Results: Few species of Alternanthera genus have been exhaustively investigated phytochemically, and about 129 chemical constituents related to different classes such as flavonoids, steroids, saponins, alkaloids, triterpenoids, glycosides, and phenolic compounds have been isolated from 9 species. Anticancer, antioxidant, antibacterial, CNS depressive, antidiabetic, analgesic, anti-inflammatory, and immunomodulator effects have been explored in the twelve species of the genus. A toxicity study has been conducted on 3 species and a clinical study on 2 species. Conclusions: The available literature on pharmacological studies of Alternanthera species reveals that few species have been selected based on ethnobotanical surveys for scientific validation of their traditional claims. But most of these studies have been conducted on uncharacterized and non-standardized crude extracts. A roadmap of research needs to be developed for the isolation of new bioactive compounds from Alternanthera species, which can emerge out as clinically potential medicines.

11.
MedComm (2020) ; 3(1): e119, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35281784

RESUMO

Since early 2020, coronavirus diseases 2019 (COVID-19) infection pandemic/endemic is constantly surprising health experts because of continuous variations in the structures of severe acute respiratory coronavirus 2 (SARS-CoV-2) in the form of newly emerged variants. Such mutations have exhibited high mortality and severity due to the newly emerged more infectious sites of SARS-CoV-2, making viral infection more transmissible, infectious, and severe. Recently, SARS-CoV-2 mutated to another variant, namely, Omicron (B.1.1.529), which is many times more transmissible and infectious than existed deadly Delta variants of the virus. This severity is closely correlated to a larger number of mutations observed in the receptor-binding domain of the spike protein of the Omicron-SARS-CoV-2. Considering severity, Omicron has been declared as variant of concerns by the World Health Organization and within days from its emergence, Omicron infection has spread globally, increased hospitalization, exhibited more severity for the young generation, invaded defense mechanism of natural immunity, not responsive to the available vaccines. Such circumstances resonated with the efficiency of available strategies established to manage COVID-19 intelligently and successfully. To explore these aspects, this perspective article carefully and critically summarizes the Omicron's origin, structure, pathogenesis, impact health along with health systems, and experts' recommendations to manage it successfully.

12.
J Nanostructure Chem ; 12(5): 833-864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35194511

RESUMO

Biomedical researchers have subsequently been inspired the development of new approaches for precisely changing an organism's genomic DNA in order to investigate customized diagnostics and therapeutics utilizing genetic engineering techniques. Clustered Regulatory Interspaced Short Palindromic Repeats (CRISPR) is one such technique that has emerged as a safe, targeted, and effective pharmaceutical treatment against a wide range of disease-causing organisms, including bacteria, fungi, parasites, and viruses, as well as genetic abnormalities. The recent discovery of very flexible engineered nucleic acid binding proteins has changed the scientific area of genome editing in a revolutionary way. Since current genetic engineering technique relies on viral vectors, issues about immunogenicity, insertional oncogenesis, retention, and targeted delivery remain unanswered. The use of nanotechnology has the potential to improve the safety and efficacy of CRISPR/Cas9 component distribution by employing tailored polymeric nanoparticles. The combination of two (CRISPR/Cas9 and nanotechnology) offers the potential to open new therapeutic paths. Considering the benefits, demand, and constraints, the goal of this research is to acquire more about the biology of CRISPR technology, as well as aspects of selective and effective diagnostics and therapies for infectious illnesses and other metabolic disorders. This review advocated combining nanomedicine (nanomedicine) with a CRISPR/Cas enabled sensing system to perform early-stage diagnostics and selective therapy of specific infectious disorders. Such a Nano-CRISPR-powered nanomedicine and sensing system would allow for successful infectious illness control, even on a personal level. This comprehensive study also discusses the current obstacles and potential of the predicted technology. Supplementary Information: The online version contains supplementary material available at 10.1007/s40097-022-00472-7.

13.
Biotechnol Rep (Amst) ; 33: e00712, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35186674

RESUMO

Optimized therapeutic bio-compounds supported by bio-acceptable nanosystems (i.e., precise nanomedicine) have ability to promote health via maintaining body structure, organ function, and controlling chronic and acute effects. Therefore, nano-nutraceuticals (designed to neutralize virus, inhibit virus bindings with receptors, and support immunity) utilization can manage COVID-19 pre/post-infection effects. To explore these approaches well, our mini-review explores optimized bio-active compounds, their ability to influence SARS-CoV-2 infection, improvement in performance supported by precise nanomedicine approach, and challenges along with prospects. Such optimized pharmacologically relevant therapeutic cargo not only affect SARS-CoV-2 but will support other organs which show functional alternation due to SARS-CoV-2 for example, neurological functions. Hence, coupling the nutraceuticals with the nano-pharmacology perspective of higher efficacy via targeted delivery action can pave a novel way for health experts to plan future research needed to manage post COVID-19 infection effect where a longer efficacy with no side-effects is a key requirement.

14.
Curr Top Med Chem ; 22(2): 132-149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34649489

RESUMO

Bergenin, 4-O-methyl gallic acid glucoside, is a bioactive compound in various plants belonging to different families. The present work compiles scattered information on pharmacology, structure-activity relationship and nanotechnological aspects of bergenin, collected from various electronic databases such as Sci Finder, PubMed, Google Scholar, etc. Bergenin has been reported to exhibit hepatoprotective, anti-inflammatory, anticancer, neuroprotective, antiviral, and antimicrobial activities. Molecular docking studies have shown that isocoumarin pharmacophore of bergenin is essential for its bioactivities. Bergenin holds a great potential to be used as a lead molecule and also as a therapeutic agent for the development of more efficacious and safer semisynthetic derivatives. Nanotechnological concepts can be employed to overcome the poor bioavailability of bergenin. Finally, it is concluded that bergenin can emerge as clinically potential medicine in modern therapeutics.


Assuntos
Benzopiranos , Benzopiranos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
15.
Front Pharmacol ; 12: 732266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737700

RESUMO

Background: With prostate cancer being the fifth-greatest cause of cancer mortality in 2020, there is a dire need to expand the available treatment options. Castration-resistant prostate cancer (CRPC) progresses despite androgen depletion therapy. The mechanisms of resistance are yet to be fully discovered. However, it is hypothesized that androgens depletion enables androgen-independent cells to proliferate and recolonize the tumor. Objectives: Natural bioactive compounds from edible plants and herbal remedies might potentially address this need. This review compiles the available cheminformatics-based studies and the translational studies regarding the use of natural products to manage CRPC. Methods: PubMed and Google Scholar searches for preclinical studies were performed, while ClinicalTrials.gov and PubMed were searched for clinical updates. Studies that were not in English and not available as full text were excluded. The period of literature covered was from 1985 to the present. Results and Conclusion: Our analysis suggested that natural compounds exert beneficial effects due to their broad-spectrum molecular disease-associated targets. In vitro and in vivo studies revealed several bioactive compounds, including rutaecarpine, berberine, curcumin, other flavonoids, pentacyclic triterpenoids, and steroid-based phytochemicals. Molecular modeling tools, including machine and deep learning, have made the analysis more comprehensive. Preclinical and clinical studies on resveratrol, soy isoflavone, lycopene, quercetin, and gossypol have further validated the translational potential of the natural products in the management of prostate cancer.

16.
Chem Biol Interact ; 332: 109298, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33121920

RESUMO

The on-going pandemic of COVID-19 wreaked by a viral infection of SARS-CoV-2, has generated a catastrophic plight across the globe. Interestingly, one of the hallmarks of COVID-19 is the so-called 'cytokine storm' due to attack of SARS-Cov-2 in the lungs. Considering, mesenchymal stem cells (MSCs) therapy could contribute against SARS-CoV-2 viruses attack because of their immune modulatory and anti-inflammatory ability linked to their stemness, to the arsenal of treatments for COVID-19. Another novel therapeutic strategies include the blockade of rampant generation of pro-inflammatory mediators like acute respiratory distress syndrome (ARDS), degradation of viral protein capsids by PROTACs, composed of Ubiquitin-proteasome framework, and ubiquitination-independent pathway directing the SARS-CoV-2 nucleocapsid protein (nCoV N) and proteasome activator (PA28γ), etc. This review is consequently an endeavour to highlight the several aspects of COVID-19 with incorporation of important treatment strategies discovered to date and putting the real effort on the future directions to put them into the perspective.


Assuntos
Tratamento Farmacológico da COVID-19 , Animais , COVID-19/epidemiologia , COVID-19/etiologia , COVID-19/terapia , Humanos , Pandemias , SARS-CoV-2/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...